15.23.11 problem 15

Internal problem ID [3361]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 41, page 195
Problem number : 15
Date solved : Monday, January 27, 2025 at 07:34:53 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 x^{2} y^{\prime \prime }-3 \left (x^{2}+x \right ) y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.012 (sec). Leaf size: 435

Order:=6; 
dsolve(4*x^2*diff(y(x),x$2)-3*(x+x^2)*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);
 
\[ y \left (x \right ) = x^{{7}/{8}} \left (c_{2} x^{\frac {\sqrt {17}}{8}} \left (1+\frac {21+3 \sqrt {17}}{8 \sqrt {17}+32} x +\frac {9}{128} \frac {\left (15+\sqrt {17}\right ) \left (7+\sqrt {17}\right )}{\left (4+\sqrt {17}\right ) \left (8+\sqrt {17}\right )} x^{2}+\frac {9}{1024} \frac {\left (23+\sqrt {17}\right ) \left (15+\sqrt {17}\right ) \left (7+\sqrt {17}\right )}{\left (4+\sqrt {17}\right ) \left (8+\sqrt {17}\right ) \left (12+\sqrt {17}\right )} x^{3}+\frac {27}{32768} \frac {\left (31+\sqrt {17}\right ) \left (23+\sqrt {17}\right ) \left (15+\sqrt {17}\right ) \left (7+\sqrt {17}\right )}{\left (4+\sqrt {17}\right ) \left (8+\sqrt {17}\right ) \left (12+\sqrt {17}\right ) \left (16+\sqrt {17}\right )} x^{4}+\frac {81}{1310720} \frac {\left (39+\sqrt {17}\right ) \left (31+\sqrt {17}\right ) \left (23+\sqrt {17}\right ) \left (15+\sqrt {17}\right ) \left (7+\sqrt {17}\right )}{\left (4+\sqrt {17}\right ) \left (8+\sqrt {17}\right ) \left (12+\sqrt {17}\right ) \left (16+\sqrt {17}\right ) \left (20+\sqrt {17}\right )} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{1} x^{-\frac {\sqrt {17}}{8}} \left (1+\frac {-21+3 \sqrt {17}}{8 \sqrt {17}-32} x +\frac {9}{128} \frac {\left (-15+\sqrt {17}\right ) \left (-7+\sqrt {17}\right )}{\left (-4+\sqrt {17}\right ) \left (-8+\sqrt {17}\right )} x^{2}+\frac {9}{1024} \frac {\left (-23+\sqrt {17}\right ) \left (-15+\sqrt {17}\right ) \left (-7+\sqrt {17}\right )}{\left (-4+\sqrt {17}\right ) \left (-8+\sqrt {17}\right ) \left (-12+\sqrt {17}\right )} x^{3}+\frac {27}{32768} \frac {\left (-31+\sqrt {17}\right ) \left (-23+\sqrt {17}\right ) \left (-15+\sqrt {17}\right ) \left (-7+\sqrt {17}\right )}{\left (-4+\sqrt {17}\right ) \left (-8+\sqrt {17}\right ) \left (-12+\sqrt {17}\right ) \left (-16+\sqrt {17}\right )} x^{4}+\frac {81}{1310720} \frac {\left (-39+\sqrt {17}\right ) \left (-31+\sqrt {17}\right ) \left (-23+\sqrt {17}\right ) \left (-15+\sqrt {17}\right ) \left (-7+\sqrt {17}\right )}{\left (-4+\sqrt {17}\right ) \left (-8+\sqrt {17}\right ) \left (-12+\sqrt {17}\right ) \left (-16+\sqrt {17}\right ) \left (-20+\sqrt {17}\right )} x^{5}+\operatorname {O}\left (x^{6}\right )\right )\right ) \]

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 2028

AsymptoticDSolveValue[4*x^2*D[y[x],{x,2}]-3*(x+x^2)*D[y[x],x]+2*y[x]==0,y[x],{x,0,"6"-1}]
 

Too large to display