15.7.2 problem 2

Internal problem ID [2983]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 11, page 45
Problem number : 2
Date solved : Tuesday, March 04, 2025 at 03:37:15 PM
CAS classification : [_Bernoulli]

\begin{align*} y^{3} y^{\prime }+x y^{4}&=x \,{\mathrm e}^{-x^{2}} \end{align*}

Maple. Time used: 0.014 (sec). Leaf size: 112
ode:=y(x)^3*diff(y(x),x)+x*y(x)^4 = x*exp(-x^2); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= {\mathrm e}^{-x^{2}} {\left (\left (2 \,{\mathrm e}^{x^{2}}+c_{1} \right ) {\mathrm e}^{2 x^{2}}\right )}^{{1}/{4}} \\ y &= -{\mathrm e}^{-x^{2}} {\left (\left (2 \,{\mathrm e}^{x^{2}}+c_{1} \right ) {\mathrm e}^{2 x^{2}}\right )}^{{1}/{4}} \\ y &= -i {\mathrm e}^{-x^{2}} {\left (\left (2 \,{\mathrm e}^{x^{2}}+c_{1} \right ) {\mathrm e}^{2 x^{2}}\right )}^{{1}/{4}} \\ y &= i {\mathrm e}^{-x^{2}} {\left (\left (2 \,{\mathrm e}^{x^{2}}+c_{1} \right ) {\mathrm e}^{2 x^{2}}\right )}^{{1}/{4}} \\ \end{align*}
Mathematica. Time used: 0.414 (sec). Leaf size: 200
ode=y[x]^3*D[y[x],x]+x*y[x]^4==x*exp[-x^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -e^{-\frac {x^2}{2}} \sqrt [4]{4 \int _1^xe^{2 K[1]^2} \exp \left (-K[1]^2\right ) K[1]dK[1]+c_1} \\ y(x)\to -i e^{-\frac {x^2}{2}} \sqrt [4]{4 \int _1^xe^{2 K[1]^2} \exp \left (-K[1]^2\right ) K[1]dK[1]+c_1} \\ y(x)\to i e^{-\frac {x^2}{2}} \sqrt [4]{4 \int _1^xe^{2 K[1]^2} \exp \left (-K[1]^2\right ) K[1]dK[1]+c_1} \\ y(x)\to e^{-\frac {x^2}{2}} \sqrt [4]{4 \int _1^xe^{2 K[1]^2} \exp \left (-K[1]^2\right ) K[1]dK[1]+c_1} \\ \end{align*}
Sympy. Time used: 2.822 (sec). Leaf size: 82
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x)**4 - x*exp(-x**2) + y(x)**3*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - i \sqrt [4]{\left (C_{1} e^{- x^{2}} + 2\right ) e^{- x^{2}}}, \ y{\left (x \right )} = i \sqrt [4]{\left (C_{1} e^{- x^{2}} + 2\right ) e^{- x^{2}}}, \ y{\left (x \right )} = - \sqrt [4]{\left (C_{1} e^{- x^{2}} + 2\right ) e^{- x^{2}}}, \ y{\left (x \right )} = \sqrt [4]{\left (C_{1} e^{- x^{2}} + 2\right ) e^{- x^{2}}}\right ] \]