15.23.22 problem 26

Internal problem ID [3372]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 41, page 195
Problem number : 26
Date solved : Monday, January 27, 2025 at 07:35:07 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 2 x y^{\prime \prime }-\left (x^{3}+1\right ) y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.015 (sec). Leaf size: 44

Order:=6; 
dsolve(2*x*diff(y(x),x$2)-(1+x^3)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
 
\[ y \left (x \right ) = c_{1} x^{{3}/{2}} \left (1-\frac {1}{5} x +\frac {1}{70} x^{2}+\frac {52}{945} x^{3}-\frac {1049}{83160} x^{4}+\frac {5207}{5405400} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (1+x -\frac {1}{2} x^{2}+\frac {1}{18} x^{3}+\frac {17}{360} x^{4}-\frac {377}{12600} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 81

AsymptoticDSolveValue[2*x*D[y[x],{x,2}]-(1+x^3)*D[y[x],x]+y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (-\frac {377 x^5}{12600}+\frac {17 x^4}{360}+\frac {x^3}{18}-\frac {x^2}{2}+x+1\right )+c_1 \left (\frac {5207 x^5}{5405400}-\frac {1049 x^4}{83160}+\frac {52 x^3}{945}+\frac {x^2}{70}-\frac {x}{5}+1\right ) x^{3/2} \]