17.1.4 problem 1.1-2 (d)

Internal problem ID [3421]
Book : Ordinary Differential Equations, Robert H. Martin, 1983
Section : Problem 1.1-2, page 6
Problem number : 1.1-2 (d)
Date solved : Monday, January 27, 2025 at 07:36:14 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=\sin \left (t \right )^{2} \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 15

dsolve(diff(y(t),t)=sin(t)^2,y(t), singsol=all)
 
\[ y = \frac {t}{2}+c_{1} -\frac {\sin \left (2 t \right )}{4} \]

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 21

DSolve[D[y[t],t]==Sin[t]^2,y[t],t,IncludeSingularSolutions -> True]
 
\[ y(t)\to \frac {t}{2}-\frac {1}{4} \sin (2 t)+c_1 \]