18.3.12 problem Problem 16.13

Internal problem ID [3512]
Book : Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002
Section : Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550
Problem number : Problem 16.13
Date solved : Monday, January 27, 2025 at 07:40:08 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} y^{\prime \prime }+\frac {y}{z^{3}}&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Order:=6; 
dsolve(diff(y(z),z$2)+1/z^3*y(z)=0,y(z),type='series',z=0);
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 222

AsymptoticDSolveValue[D[y[z],{z,2}]+1/z^3*y[z]==0,y[z],{z,0,"6"-1}]
 
\[ y(z)\to c_1 e^{-\frac {2 i}{\sqrt {z}}} z^{3/4} \left (-\frac {468131288625 i z^{9/2}}{8796093022208}+\frac {66891825 i z^{7/2}}{4294967296}-\frac {72765 i z^{5/2}}{8388608}+\frac {105 i z^{3/2}}{8192}+\frac {33424574007825 z^5}{281474976710656}-\frac {14783093325 z^4}{549755813888}+\frac {2837835 z^3}{268435456}-\frac {4725 z^2}{524288}+\frac {15 z}{512}-\frac {3 i \sqrt {z}}{16}+1\right )+c_2 e^{\frac {2 i}{\sqrt {z}}} z^{3/4} \left (\frac {468131288625 i z^{9/2}}{8796093022208}-\frac {66891825 i z^{7/2}}{4294967296}+\frac {72765 i z^{5/2}}{8388608}-\frac {105 i z^{3/2}}{8192}+\frac {33424574007825 z^5}{281474976710656}-\frac {14783093325 z^4}{549755813888}+\frac {2837835 z^3}{268435456}-\frac {4725 z^2}{524288}+\frac {15 z}{512}+\frac {3 i \sqrt {z}}{16}+1\right ) \]