Internal
problem
ID
[3138]
Book
:
Differential
Equations
by
Alfred
L.
Nelson,
Karl
W.
Folley,
Max
Coral.
3rd
ed.
DC
heath.
Boston.
1964
Section
:
Exercise
19,
page
86
Problem
number
:
28
Date
solved
:
Tuesday, March 04, 2025 at 04:02:55 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(x),x),x)+4*y(x) = 12*cos(x)^2; ic:=y(1/2*Pi) = 0, D(y)(1/2*Pi) = 1/2*Pi; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]+4*y[x]==12*Cos[x]^2; ic={y[Pi/2]==0,Derivative[1][y][Pi/2]==Pi/2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*y(x) - 12*cos(x)**2 + Derivative(y(x), (x, 2)),0) ics = {y(pi/2): 0, Subs(Derivative(y(x), x), x, pi/2): pi/2} dsolve(ode,func=y(x),ics=ics)