19.1.6 problem 6

Internal problem ID [3520]
Book : Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section : 1.4, page 36
Problem number : 6
Date solved : Monday, January 27, 2025 at 07:40:21 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\frac {2 x \left (y-1\right )}{x^{2}+3} \end{align*}

Solution by Maple

Time used: 0.000 (sec). Leaf size: 14

dsolve(diff(y(x),x)=(2*x*(y(x)-1))/(x^2+3),y(x), singsol=all)
 
\[ y \left (x \right ) = c_{1} x^{2}+3 c_{1} +1 \]

Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 20

DSolve[D[y[x],x]==(2*x*(y[x]-1))/(x^2+3),y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to 1+c_1 \left (x^2+3\right ) \\ y(x)\to 1 \\ \end{align*}