20.2.8 problem Problem 8

Internal problem ID [3600]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43
Problem number : Problem 8
Date solved : Monday, January 27, 2025 at 07:47:10 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \end{align*}

Solution by Maple

Time used: 0.204 (sec). Leaf size: 11

dsolve(diff(y(x),x)=cos(x-y(x))/(sin(x)*sin(y(x)))-1,y(x), singsol=all)
 
\[ y \left (x \right ) = \arccos \left (\frac {\csc \left (x \right )}{c_{1}}\right ) \]

Solution by Mathematica

Time used: 5.816 (sec). Leaf size: 47

DSolve[D[y[x],x]==Cos[x-y[x]]/(Sin[x]*Sin[y[x]])-1,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\arccos \left (-\frac {1}{2} c_1 \csc (x)\right ) \\ y(x)\to \arccos \left (-\frac {1}{2} c_1 \csc (x)\right ) \\ y(x)\to -\frac {\pi }{2} \\ y(x)\to \frac {\pi }{2} \\ \end{align*}