20.3.6 problem Problem 6

Internal problem ID [3615]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number : Problem 6
Date solved : Monday, January 27, 2025 at 07:47:38 AM
CAS classification : [_linear]

\begin{align*} y^{\prime }+\frac {2 x y}{x^{2}+1}&=\frac {4}{\left (x^{2}+1\right )^{2}} \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 18

dsolve(diff(y(x),x)+2*x/(1+x^2)*y(x)=4/(1+x^2)^2,y(x), singsol=all)
 
\[ y \left (x \right ) = \frac {4 \arctan \left (x \right )+c_{1}}{x^{2}+1} \]

Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 20

DSolve[D[y[x],x]+2*x/(1+x^2)*y[x]==4/(1+x^2)^2,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {4 \arctan (x)+c_1}{x^2+1} \]