Internal
problem
ID
[3324]
Book
:
Differential
Equations
by
Alfred
L.
Nelson,
Karl
W.
Folley,
Max
Coral.
3rd
ed.
DC
heath.
Boston.
1964
Section
:
Exercise
38,
page
173
Problem
number
:
16
Date
solved
:
Tuesday, March 04, 2025 at 04:35:29 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _dAlembert]
ode:=2*y(x) = 3*x*diff(y(x),x)+4+2*ln(diff(y(x),x)); dsolve(ode,y(x), singsol=all);
ode=2*y[x]==3*D[y[x],x]*x+4+2*Log[D[y[x],x]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-3*x*Derivative(y(x), x) + 2*y(x) - 2*log(Derivative(y(x), x)) - 4,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - 2*LambertW(3*x*exp(y(x) - 2)/2)/(3*x) cannot be solved by the factorable group method