20.6.14 problem Problem 36

Internal problem ID [3709]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number : Problem 36
Date solved : Monday, January 27, 2025 at 07:55:43 AM
CAS classification : [[_3rd_order, _exact, _linear, _homogeneous]]

\begin{align*} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y&=0 \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 20

dsolve(x^3*diff(y(x),x$3)+x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)
 
\[ y \left (x \right ) = \frac {c_3 \,x^{3}+c_{1} x^{2}+c_{2}}{x} \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 22

DSolve[x^3*D[y[x],{x,3}]+x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_3 x^2+c_2 x+\frac {c_1}{x} \]