15.24.1 problem 1

Internal problem ID [3373]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 42, page 206
Problem number : 1
Date solved : Tuesday, March 04, 2025 at 04:37:03 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x y^{\prime \prime }+y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.013 (sec). Leaf size: 44
Order:=6; 
ode:=x*diff(diff(y(x),x),x)+diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y \left (x \right ) = \left (c_{2} \ln \left (x \right )+c_{1} \right ) \left (1-2 x +x^{2}-\frac {2}{9} x^{3}+\frac {1}{36} x^{4}-\frac {1}{450} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (4 x -3 x^{2}+\frac {22}{27} x^{3}-\frac {25}{216} x^{4}+\frac {137}{13500} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_{2} \]
Mathematica. Time used: 0.004 (sec). Leaf size: 101
ode=x*D[y[x],{x,2}]+D[y[x],x]+2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (-\frac {x^5}{450}+\frac {x^4}{36}-\frac {2 x^3}{9}+x^2-2 x+1\right )+c_2 \left (\frac {137 x^5}{13500}-\frac {25 x^4}{216}+\frac {22 x^3}{27}-3 x^2+\left (-\frac {x^5}{450}+\frac {x^4}{36}-\frac {2 x^3}{9}+x^2-2 x+1\right ) \log (x)+4 x\right ) \]
Sympy. Time used: 0.676 (sec). Leaf size: 32
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) + 2*y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} \left (- \frac {x^{5}}{450} + \frac {x^{4}}{36} - \frac {2 x^{3}}{9} + x^{2} - 2 x + 1\right ) + O\left (x^{6}\right ) \]