15.24.3 problem 3

Internal problem ID [3375]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 42, page 206
Problem number : 3
Date solved : Tuesday, March 04, 2025 at 04:37:05 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 \left (1+x \right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.010 (sec). Leaf size: 48
Order:=6; 
ode:=x^2*diff(diff(y(x),x),x)-3*x*diff(y(x),x)+4*(1+x)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y \left (x \right ) = x^{2} \left (\left (c_{2} \ln \left (x \right )+c_{1} \right ) \left (1-4 x +4 x^{2}-\frac {16}{9} x^{3}+\frac {4}{9} x^{4}-\frac {16}{225} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (8 x -12 x^{2}+\frac {176}{27} x^{3}-\frac {50}{27} x^{4}+\frac {1096}{3375} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_{2} \right ) \]
Mathematica. Time used: 0.004 (sec). Leaf size: 116
ode=x^2*D[y[x],{x,2}]-3*x*D[y[x],x]+4*(1+x)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (-\frac {16 x^5}{225}+\frac {4 x^4}{9}-\frac {16 x^3}{9}+4 x^2-4 x+1\right ) x^2+c_2 \left (\left (\frac {1096 x^5}{3375}-\frac {50 x^4}{27}+\frac {176 x^3}{27}-12 x^2+8 x\right ) x^2+\left (-\frac {16 x^5}{225}+\frac {4 x^4}{9}-\frac {16 x^3}{9}+4 x^2-4 x+1\right ) x^2 \log (x)\right ) \]
Sympy. Time used: 0.777 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - 3*x*Derivative(y(x), x) + (4*x + 4)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} x^{2} \left (- \frac {16 x^{3}}{9} + 4 x^{2} - 4 x + 1\right ) + O\left (x^{6}\right ) \]