Internal
problem
ID
[3395]
Book
:
Differential
Equations
by
Alfred
L.
Nelson,
Karl
W.
Folley,
Max
Coral.
3rd
ed.
DC
heath.
Boston.
1964
Section
:
Exercise
43,
page
209
Problem
number
:
7
Date
solved
:
Tuesday, March 04, 2025 at 04:37:34 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using series method with expansion around
Order:=6; ode:=3*x^2*(1+x)*diff(diff(y(x),x),x)+x*(5-x)*diff(y(x),x)+(2*x^2-1)*y(x) = -x^3+x; dsolve(ode,y(x),type='series',x=0);
ode=3*x^2*(x+1)*D[y[x],{x,2}]+x*(5-x)*D[y[x],x]+(2*x^2-1)*y[x]==x-x^3; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3 + 3*x**2*(x + 1)*Derivative(y(x), (x, 2)) + x*(5 - x)*Derivative(y(x), x) - x + (2*x**2 - 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
ValueError : ODE x**3 + 3*x**2*(x + 1)*Derivative(y(x), (x, 2)) + x*(5 - x)*Derivative(y(x), x) - x + (2*x**2 - 1)*y(x) does not match hint 2nd_power_series_regular