17.1.3 problem 1.1-2 (c)

Internal problem ID [3420]
Book : Ordinary Differential Equations, Robert H. Martin, 1983
Section : Problem 1.1-2, page 6
Problem number : 1.1-2 (c)
Date solved : Tuesday, March 04, 2025 at 04:38:15 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=\sin \left (3 t \right ) \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 12
ode:=diff(y(t),t) = sin(3*t); 
dsolve(ode,y(t), singsol=all);
 
\[ y = -\frac {\cos \left (3 t \right )}{3}+c_{1} \]
Mathematica. Time used: 0.005 (sec). Leaf size: 16
ode=D[y[t],t]==Sin[3*t]; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to -\frac {1}{3} \cos (3 t)+c_1 \]
Sympy. Time used: 0.114 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-sin(3*t) + Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} - \frac {\cos {\left (3 t \right )}}{3} \]