17.1.6 problem 1.1-2 (f)

Internal problem ID [3423]
Book : Ordinary Differential Equations, Robert H. Martin, 1983
Section : Problem 1.1-2, page 6
Problem number : 1.1-2 (f)
Date solved : Tuesday, March 04, 2025 at 04:38:18 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=\ln \left (t \right ) \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 13
ode:=diff(y(t),t) = ln(t); 
dsolve(ode,y(t), singsol=all);
 
\[ y = t \ln \left (t \right )-t +c_{1} \]
Mathematica. Time used: 0.004 (sec). Leaf size: 15
ode=D[y[t],t]==Log[t]; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to -t+t \log (t)+c_1 \]
Sympy. Time used: 0.138 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-log(t) + Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} + t \log {\left (t \right )} - t \]