20.12.14 problem Problem 33

Internal problem ID [3808]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575
Problem number : Problem 33
Date solved : Monday, January 27, 2025 at 08:02:45 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 23

dsolve(diff(y(x),x$2)+y(x)=tan(x),y(x), singsol=all)
 
\[ y \left (x \right ) = c_{2} \sin \left (x \right )+\cos \left (x \right ) c_{1} -\cos \left (x \right ) \ln \left (\sec \left (x \right )+\tan \left (x \right )\right ) \]

Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 23

DSolve[D[y[x],{x,2}]+y[x]==Tan[x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \cos (x) (-\text {arctanh}(\sin (x)))+c_1 \cos (x)+c_2 \sin (x) \]