Internal
problem
ID
[3428]
Book
:
Ordinary
Differential
Equations,
Robert
H.
Martin,
1983
Section
:
Problem
1.1-3,
page
6
Problem
number
:
1.1-3
(d)
Date
solved
:
Tuesday, March 04, 2025 at 04:38:29 PM
CAS
classification
:
[_quadrature]
With initial conditions
ode:=diff(y(t),t) = t*exp(2*t); ic:=y(1) = 5; dsolve([ode,ic],y(t), singsol=all);
ode=D[y[t],t]==t*Exp[2*t]; ic=y[1]==5; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t*exp(2*t) + Derivative(y(t), t),0) ics = {y(1): 5} dsolve(ode,func=y(t),ics=ics)