Internal
problem
ID
[3430]
Book
:
Ordinary
Differential
Equations,
Robert
H.
Martin,
1983
Section
:
Problem
1.1-3,
page
6
Problem
number
:
1.1-3
(f)
Date
solved
:
Tuesday, March 04, 2025 at 04:38:32 PM
CAS
classification
:
[_quadrature]
With initial conditions
ode:=diff(y(t),t) = 8*exp(4*t)+t; ic:=y(0) = 12; dsolve([ode,ic],y(t), singsol=all);
ode=D[y[t],t]==8*Exp[4*t]+t; ic=y[0]==12; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t - 8*exp(4*t) + Derivative(y(t), t),0) ics = {y(0): 12} dsolve(ode,func=y(t),ics=ics)