Internal
problem
ID
[3453]
Book
:
Ordinary
Differential
Equations,
Robert
H.
Martin,
1983
Section
:
Problem
1.2-3,
page
12
Problem
number
:
1.2-3
(a)
Date
solved
:
Tuesday, March 04, 2025 at 04:39:44 PM
CAS
classification
:
[_separable]
With initial conditions
ode:=diff(y(t),t)+4*tan(2*t)*y(t) = tan(2*t); ic:=y(1/8*Pi) = 2; dsolve([ode,ic],y(t), singsol=all);
ode=D[y[t],t]+4*Tan[2*t]*y[t]==Tan[2*t]; ic=y[Pi/8]==2; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(4*y(t)*tan(2*t) - tan(2*t) + Derivative(y(t), t),0) ics = {y(pi/8): 2} dsolve(ode,func=y(t),ics=ics)