Internal
problem
ID
[3459]
Book
:
Mathematical
methods
for
physics
and
engineering,
Riley,
Hobson,
Bence,
second
edition,
2002
Section
:
Chapter
14,
First
order
ordinary
differential
equations.
14.4
Exercises,
page
490
Problem
number
:
Problem
14.2
(c)
Date
solved
:
Tuesday, March 04, 2025 at 04:40:01 PM
CAS
classification
:
[_separable]
ode:=x^2*diff(y(x),x)+x*y(x)^2 = 4*y(x)^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]+x*y[x]^2==4*y[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x) + x*y(x)**2 - 4*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)