18.1.5 problem Problem 14.3 (b)

Internal problem ID [3461]
Book : Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002
Section : Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number : Problem 14.3 (b)
Date solved : Tuesday, March 04, 2025 at 04:40:07 PM
CAS classification : [_linear]

\begin{align*} 2 x y^{\prime }+3 x +y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 13
ode:=2*x*diff(y(x),x)+3*x+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = -x +\frac {c_{1}}{\sqrt {x}} \]
Mathematica. Time used: 0.027 (sec). Leaf size: 17
ode=2*x*D[y[x],x]+3*x+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -x+\frac {c_1}{\sqrt {x}} \]
Sympy. Time used: 0.153 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*Derivative(y(x), x) + 3*x + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{\sqrt {x}} - x \]