Internal
problem
ID
[3483]
Book
:
Mathematical
methods
for
physics
and
engineering,
Riley,
Hobson,
Bence,
second
edition,
2002
Section
:
Chapter
14,
First
order
ordinary
differential
equations.
14.4
Exercises,
page
490
Problem
number
:
Problem
14.31
Date
solved
:
Tuesday, March 04, 2025 at 04:42:59 PM
CAS
classification
:
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]
With initial conditions
ode:=diff(diff(y(x),x),x)+diff(y(x),x)^2+diff(y(x),x) = 0; ic:=y(0) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]+(D[y[x],x])^2+D[y[x],x]==0; ic=y[0]==0; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x)**2 + Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 0} dsolve(ode,func=y(x),ics=ics)