20.17.14 problem 14

Internal problem ID [3868]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 9, First order linear systems. Section 9.5 (Defective coefficient matrix), page 619
Problem number : 14
Date solved : Monday, January 27, 2025 at 08:03:39 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=-x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=x_{1} \left (t \right )\\ \frac {d}{d t}x_{3} \left (t \right )&=x_{1} \left (t \right )-x_{4} \left (t \right )\\ \frac {d}{d t}x_{4} \left (t \right )&=x_{2} \left (t \right )+x_{3} \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.184 (sec). Leaf size: 80

dsolve([diff(x__1(t),t)=0*x__1(t)-x__2(t)+0*x__3(t)+0*x__4(t),diff(x__2(t),t)=1*x__1(t)+0*x__2(t)+0*x__3(t)+0*x__4(t),diff(x__3(t),t)=1*x__1(t)+0*x__2(t)+0*x__3(t)-1*x__4(t),diff(x__4(t),t)=0*x__1(t)+1*x__2(t)+1*x__3(t)+0*x__4(t)],singsol=all)
 
\begin{align*} x_{1} \left (t \right ) &= c_3 \sin \left (t \right )+c_4 \cos \left (t \right ) \\ x_{2} \left (t \right ) &= c_4 \sin \left (t \right )-\cos \left (t \right ) c_3 \\ x_{3} \left (t \right ) &= \sin \left (t \right ) c_3 t +\cos \left (t \right ) c_4 t +\sin \left (t \right ) c_{2} +\cos \left (t \right ) c_{1} +\cos \left (t \right ) c_3 \\ x_{4} \left (t \right ) &= \sin \left (t \right ) c_4 t -\cos \left (t \right ) c_3 t +c_{1} \sin \left (t \right )+c_3 \sin \left (t \right )-c_{2} \cos \left (t \right ) \\ \end{align*}

Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 80

DSolve[{D[x1[t],t]==0*x1[t]-1*x2[t]+0*x3[t]+0*x4[t],D[x2[t],t]==1*x1[t]+0*x2[t]+0*x3[t]+0*x4[t],D[x3[t],t]==1*x1[t]+0*x2[t]+0*x3[t]-1*x4[t],D[x4[t],t]==0*x1[t]+1*x2[t]+1*x3[t]+0*x4[t]},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} \text {x1}(t)\to c_1 \cos (t)-c_2 \sin (t) \\ \text {x2}(t)\to c_2 \cos (t)+c_1 \sin (t) \\ \text {x3}(t)\to (c_1 t+c_3) \cos (t)-(c_2 t+c_4) \sin (t) \\ \text {x4}(t)\to (c_2 t+c_4) \cos (t)+(c_1 t+c_3) \sin (t) \\ \end{align*}