Internal
problem
ID
[3879]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
9,
First
order
linear
systems.
Section
9.6
(Variation
of
parameters
for
linear
systems),
page
624
Problem
number
:
9
Date
solved
:
Monday, January 27, 2025 at 08:03:48 AM
CAS
classification
:
system_of_ODEs
✓ Solution by Maple
Time used: 0.068 (sec). Leaf size: 65
dsolve([diff(x__1(t),t)=-x__1(t)-2*x__2(t)+2*x__3(t)-exp(3*t),diff(x__2(t),t)=2*x__1(t)+4*x__2(t)-x__3(t)+4*exp(3*t),diff(x__3(t),t)=3*x__3(t)+3*exp(3*t)],singsol=all)
✓ Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 106
DSolve[{D[x1[t],t]==-x1[t]-2*x2[t]+2*x3[t]-Exp[3*t],D[x2[t],t]==2*x1[t]+4*x2[t]-x3[t]+4*Exp[3*t],D[x3[t],t]==3*x3[t]+3*Exp[3*t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]