20.19.7 problem 8

Internal problem ID [3887]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 9, First order linear systems. Section 9.8 (Matrix exponential function), page 642
Problem number : 8
Date solved : Monday, January 27, 2025 at 08:03:55 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=x_{2} \left (t \right )+3 x_{3} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=2 x_{1} \left (t \right )+3 x_{2} \left (t \right )-2 x_{3} \left (t \right )\\ \frac {d}{d t}x_{3} \left (t \right )&=2 x_{2} \left (t \right )+2 x_{3} \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.152 (sec). Leaf size: 1983

dsolve([diff(x__1(t),t)=0*x__1(t)+x__2(t)+3*x__3(t),diff(x__2(t),t)=2*x__1(t)+3*x__2(t)-2*x__3(t),diff(x__3(t),t)=1*x__2(t)+1*x__2(t)+2*x__3(t)],singsol=all)
 
\begin{align*} \text {Expression too large to display} \\ x_{2} \left (t \right ) &= \left (\left (-\frac {\sqrt {3}\, \left (\left (53+6 \sqrt {78}\right )^{{2}/{3}}-1\right ) c_3}{12 \left (53+6 \sqrt {78}\right )^{{1}/{3}}}+\frac {\left (\left (53+6 \sqrt {78}\right )^{{2}/{3}}+2 \left (53+6 \sqrt {78}\right )^{{1}/{3}}+1\right ) c_{2}}{12 \left (53+6 \sqrt {78}\right )^{{1}/{3}}}\right ) \sin \left (\frac {\sqrt {3}\, \left (\left (53+6 \sqrt {78}\right )^{{2}/{3}}-1\right ) t}{6 \left (53+6 \sqrt {78}\right )^{{1}/{3}}}\right )+\left (-\frac {\left (\left (53+6 \sqrt {78}\right )^{{2}/{3}}+2 \left (53+6 \sqrt {78}\right )^{{1}/{3}}+1\right ) c_3}{12 \left (53+6 \sqrt {78}\right )^{{1}/{3}}}-\frac {\sqrt {3}\, \left (\left (53+6 \sqrt {78}\right )^{{2}/{3}}-1\right ) c_{2}}{12 \left (53+6 \sqrt {78}\right )^{{1}/{3}}}\right ) \cos \left (\frac {\sqrt {3}\, \left (\left (53+6 \sqrt {78}\right )^{{2}/{3}}-1\right ) t}{6 \left (53+6 \sqrt {78}\right )^{{1}/{3}}}\right )\right ) {\mathrm e}^{-\frac {\left (1+\left (53+6 \sqrt {78}\right )^{{2}/{3}}-10 \left (53+6 \sqrt {78}\right )^{{1}/{3}}\right ) t}{6 \left (53+6 \sqrt {78}\right )^{{1}/{3}}}}+\frac {\left (\left (53+6 \sqrt {78}\right )^{{2}/{3}}-\left (53+6 \sqrt {78}\right )^{{1}/{3}}+1\right ) c_{1} {\mathrm e}^{\frac {\left (\left (53+6 \sqrt {78}\right )^{{2}/{3}}+5 \left (53+6 \sqrt {78}\right )^{{1}/{3}}+1\right ) t}{3 \left (53+6 \sqrt {78}\right )^{{1}/{3}}}}}{6 \left (53+6 \sqrt {78}\right )^{{1}/{3}}} \\ x_{3} \left (t \right ) &= -c_{2} {\mathrm e}^{-\frac {\left (1+\left (53+6 \sqrt {78}\right )^{{2}/{3}}-10 \left (53+6 \sqrt {78}\right )^{{1}/{3}}\right ) t}{6 \left (53+6 \sqrt {78}\right )^{{1}/{3}}}} \sin \left (\frac {\sqrt {3}\, \left (\left (53+6 \sqrt {78}\right )^{{2}/{3}}-1\right ) t}{6 \left (53+6 \sqrt {78}\right )^{{1}/{3}}}\right )+c_3 \,{\mathrm e}^{-\frac {\left (1+\left (53+6 \sqrt {78}\right )^{{2}/{3}}-10 \left (53+6 \sqrt {78}\right )^{{1}/{3}}\right ) t}{6 \left (53+6 \sqrt {78}\right )^{{1}/{3}}}} \cos \left (\frac {\sqrt {3}\, \left (\left (53+6 \sqrt {78}\right )^{{2}/{3}}-1\right ) t}{6 \left (53+6 \sqrt {78}\right )^{{1}/{3}}}\right )+c_{1} {\mathrm e}^{\frac {\left (\left (53+6 \sqrt {78}\right )^{{2}/{3}}+5 \left (53+6 \sqrt {78}\right )^{{1}/{3}}+1\right ) t}{3 \left (53+6 \sqrt {78}\right )^{{1}/{3}}}} \\ \end{align*}

Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 148

DSolve[{D[x1[t],t]==0*x1[t]+x2[t]+3*x3[t],D[x2[t],t]==2*x1[t]+3*x2[t]-2*x3[t],D[x3[t],t]==1*x1[t]+1*x2[t]+2*x3[t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} \text {x1}(t)\to \frac {1}{8} e^{-t} \left (c_1 \left (e^{4 t} (4 t+1)+7\right )+e^{4 t} (8 c_2 t-4 c_3 t+7 c_3)-7 c_3\right ) \\ \text {x2}(t)\to \frac {1}{2} e^{-t} \left (c_1 \left (e^{4 t}-1\right )+(2 c_2-c_3) e^{4 t}+c_3\right ) \\ \text {x3}(t)\to \frac {1}{8} e^{-t} \left (c_1 \left (e^{4 t} (4 t+1)-1\right )+e^{4 t} (8 c_2 t-4 c_3 t+7 c_3)+c_3\right ) \\ \end{align*}