Internal
problem
ID
[3889]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
9,
First
order
linear
systems.
Section
9.8
(Matrix
exponential
function),
page
642
Problem
number
:
10
Date
solved
:
Monday, January 27, 2025 at 08:04:05 AM
CAS
classification
:
system_of_ODEs
✓ Solution by Maple
Time used: 0.040 (sec). Leaf size: 82
dsolve([diff(x__1(t),t)=1*x__1(t)+0*x__2(t)+0*x__3(t)+0*x__4(t),diff(x__2(t),t)=0*x__1(t)+6*x__2(t)-7*x__3(t)+3*x__4(t),diff(x__3(t),t)=0*x__1(t)+0*x__2(t)+3*x__3(t)-x__4(t),diff(x__4(t),t)=0*x__1(t)-4*x__2(t)+9*x__3(t)-3*x__4(t)],singsol=all)
✓ Solution by Mathematica
Time used: 0.030 (sec). Leaf size: 252
DSolve[{D[x1[t],t]==1*x1[t]+0*x2[t]+0*x3[t]+0*x4[t],D[x2[t],t]==0*x1[t]+6*x2[t]-7*x3[t]+3*x4[t],D[x3[t],t]==0*x1[t]+0*x2[t]+3*x3[t]-x4[t],D[x4[t],t]==0*x1[t]-4*x2[t]+9*x3[t]-3*x4[t]},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions -> True]