Internal
problem
ID
[3913]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
9,
First
order
linear
systems.
Section
9.11
(Chapter
review),
page
665
Problem
number
:
23
Date
solved
:
Monday, January 27, 2025 at 08:04:26 AM
CAS
classification
:
system_of_ODEs
✓ Solution by Maple
Time used: 0.057 (sec). Leaf size: 72
dsolve([diff(x__1(t),t)=2*x__1(t)+13*x__2(t)-0*x__3(t)+0*x__4(t),diff(x__2(t),t)=-1*x__1(t)-2*x__2(t)-0*x__3(t)+0*x__4(t),diff(x__3(t),t)=0*x__1(t)+0*x__2(t)+2*x__3(t)+4*x__4(t),diff(x__4(t),t)=0*x__1(t)+0*x__2(t)+0*x__3(t)+2*x__4(t)],singsol=all)
✓ Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 84
DSolve[{D[x1[t],t]==2*x1[t]+13*x2[t]-0*x3[t]+0*x4[t],D[x2[t],t]==-1*x1[t]-2*x2[t]-0*x3[t]+0*x4[t],D[x3[t],t]==0*x1[t]+0*x2[t]+2*x3[t]+4*x4[t],D[x4[t],t]==0*x1[t]+0*x2[t]+0*x3[t]+2*x4[t]},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions -> True]