Internal
problem
ID
[3551]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode,
second
edition,
2000
Section
:
1.8,
page
68
Problem
number
:
16
Date
solved
:
Tuesday, March 04, 2025 at 04:47:12 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=diff(y(x),x) = (y(x)^2+2*x*y(x)-2*x^2)/(x^2-x*y(x)+y(x)^2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]== (y[x]^2+2*x*y[x]-2*x^2)/(x^2-x*y[x]+y[x]^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) + (2*x**2 - 2*x*y(x) - y(x)**2)/(x**2 - x*y(x) + y(x)**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out