20.1.2 problem Problem 8

Internal problem ID [3559]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number : Problem 8
Date solved : Tuesday, March 04, 2025 at 04:50:19 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+4 y&=0 \end{align*}

Maple. Time used: 0.000 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)+4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = c_{1} \sin \left (2 x \right )+c_{2} \cos \left (2 x \right ) \]
Mathematica. Time used: 0.013 (sec). Leaf size: 20
ode=D[y[x],{x,2}]+4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \cos (2 x)+c_2 \sin (2 x) \]
Sympy. Time used: 0.050 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (2 x \right )} + C_{2} \cos {\left (2 x \right )} \]