Internal
problem
ID
[3575]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.2,
Basic
Ideas
and
Terminology.
page
21
Problem
number
:
Problem
24
Date
solved
:
Tuesday, March 04, 2025 at 04:52:11 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)