20.2.13 problem Problem 13

Internal problem ID [3605]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43
Problem number : Problem 13
Date solved : Tuesday, March 04, 2025 at 04:54:36 PM
CAS classification : [_separable]

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }+x y&=a x \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=2 a \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 20
ode:=(-x^2+1)*diff(y(x),x)+x*y(x) = a*x; 
ic:=y(0) = 2*a; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y \left (x \right ) = a \left (1-i \sqrt {x -1}\, \sqrt {x +1}\right ) \]
Mathematica. Time used: 0.044 (sec). Leaf size: 21
ode=(1-x^2)*D[y[x],x]+x*y[x]==a*x; 
ic={y[0]==2*a}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to a-i a \sqrt {x^2-1} \]
Sympy. Time used: 0.299 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a*x + x*y(x) + (1 - x**2)*Derivative(y(x), x),0) 
ics = {y(0): 2*a} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - i a \sqrt {x^{2} - 1} + a \]