20.24.8 problem Problem 8

Internal problem ID [3993]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number : Problem 8
Date solved : Monday, January 27, 2025 at 08:05:52 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+2 x^{2} y^{\prime }+2 y x&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 29

Order:=6; 
dsolve(diff(y(x),x$2)+2*x^2*diff(y(x),x)+2*x*y(x)=0,y(x),type='series',x=0);
 
\[ y \left (x \right ) = \left (1-\frac {x^{3}}{3}\right ) y \left (0\right )+\left (x -\frac {1}{3} x^{4}\right ) D\left (y \right )\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[D[y[x],{x,2}]+2*x^2*D[y[x],x]+2*x*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (x-\frac {x^4}{3}\right )+c_1 \left (1-\frac {x^3}{3}\right ) \]