Internal
problem
ID
[3615]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.6,
First-Order
Linear
Differential
Equations.
page
59
Problem
number
:
Problem
6
Date
solved
:
Tuesday, March 04, 2025 at 04:54:57 PM
CAS
classification
:
[_linear]
ode:=diff(y(x),x)+2*x/(x^2+1)*y(x) = 4/(x^2+1)^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]+2*x/(1+x^2)*y[x]==4/(1+x^2)^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*y(x)/(x**2 + 1) + Derivative(y(x), x) - 4/(x**2 + 1)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)