Internal
problem
ID
[3638]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.8,
Change
of
Variables.
page
79
Problem
number
:
Problem
11
Date
solved
:
Tuesday, March 04, 2025 at 04:55:36 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Riccati]
ode:=diff(y(x),x) = 1/2*(x+y(x))^2/x^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==(x+y[x])^2/(2*x^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x + y(x))**2/(2*x**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)