Internal
problem
ID
[3643]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.8,
Change
of
Variables.
page
79
Problem
number
:
Problem
16
Date
solved
:
Tuesday, March 04, 2025 at 04:58:02 PM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
ode:=x*diff(y(x),x)+y(x)*ln(x) = y(x)*ln(y(x)); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]+y[x]*Log[x]==y[x]*Log[y[x]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) + y(x)*log(x) - y(x)*log(y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)