20.26.2 problem Example 11.5.4 page 765

Internal problem ID [4027]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number : Example 11.5.4 page 765
Date solved : Monday, January 27, 2025 at 08:06:31 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x \left (3-x \right ) y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.013 (sec). Leaf size: 40

Order:=6; 
dsolve(x^2*diff(y(x),x$2)+x*(3-x)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
 
\[ y \left (x \right ) = \frac {\left (3 x -\frac {1}{4} x^{2}-\frac {1}{36} x^{3}-\frac {1}{288} x^{4}-\frac {1}{2400} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_{2} +\left (1-x +\operatorname {O}\left (x^{6}\right )\right ) \left (c_{2} \ln \left (x \right )+c_{1} \right )}{x} \]

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 66

AsymptoticDSolveValue[x^2*D[y[x],{x,2}]+x*(3-x)*D[y[x],x]+y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {-\frac {x^5}{2400}-\frac {x^4}{288}-\frac {x^3}{36}-\frac {x^2}{4}+3 x}{x}+\frac {(1-x) \log (x)}{x}\right )+\frac {c_1 (1-x)}{x} \]