Internal
problem
ID
[3647]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.8,
Change
of
Variables.
page
79
Problem
number
:
Problem
20
Date
solved
:
Tuesday, March 04, 2025 at 04:59:23 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=y(x)*diff(y(x),x) = (x^2+y(x)^2)^(1/2)-x; dsolve(ode,y(x), singsol=all);
ode=y[x]*D[y[x],x]==Sqrt[x^2+y[x]^2]-x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x - sqrt(x**2 + y(x)**2) + y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)