20.26.7 problem (d)

Internal problem ID [4032]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number : (d)
Date solved : Monday, January 27, 2025 at 08:06:38 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+\left (4 x +\frac {1}{2} x^{2}-\frac {1}{3} x^{3}\right ) y^{\prime }-\frac {7 y}{4}&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.016 (sec). Leaf size: 60

Order:=6; 
dsolve(x^2*diff(y(x),x$2)+(4*x+1/2*x^2-1/3*x^3)*diff(y(x),x)-7/4*y(x)=0,y(x),type='series',x=0);
 
\[ y \left (x \right ) = \frac {c_{1} x^{4} \left (1-\frac {1}{20} x +\frac {49}{2880} x^{2}-\frac {533}{241920} x^{3}+\frac {277}{491520} x^{4}-\frac {203759}{2388787200} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (\ln \left (x \right ) \left (\frac {8491}{768} x^{4}-\frac {8491}{15360} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (-144+84 x -\frac {273}{4} x^{2}+\frac {1939}{48} x^{3}-\frac {221}{12} x^{4}-\frac {49993}{57600} x^{5}+\operatorname {O}\left (x^{6}\right )\right )\right )}{x^{{7}/{2}}} \]

Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 93

AsymptoticDSolveValue[x^2*D[y[x],{x,2}]+(4*x+1/2*x^2-1/3*x^3)*D[y[x],x]-7/4*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {277 x^{9/2}}{491520}-\frac {533 x^{7/2}}{241920}+\frac {49 x^{5/2}}{2880}-\frac {x^{3/2}}{20}+\sqrt {x}\right )+c_1 \left (\frac {65067 x^4-124096 x^3+209664 x^2-258048 x+442368}{442368 x^{7/2}}-\frac {8491 \sqrt {x} \log (x)}{110592}\right ) \]