Internal
problem
ID
[3666]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.8,
Change
of
Variables.
page
79
Problem
number
:
Problem
47
Date
solved
:
Tuesday, March 04, 2025 at 05:04:36 PM
CAS
classification
:
[_Bernoulli]
ode:=diff(y(x),x)-1/2*y(x)/x/ln(x) = 2*x*y(x)^3; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]-1/(2*x*Log[x])*y[x]==2*x*y[x]^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*y(x)**3 + Derivative(y(x), x) - y(x)/(2*x*log(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)