Internal
problem
ID
[3671]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.8,
Change
of
Variables.
page
79
Problem
number
:
Problem
52
Date
solved
:
Tuesday, March 04, 2025 at 05:05:31 PM
CAS
classification
:
[_Bernoulli]
With initial conditions
ode:=diff(y(x),x)+y(x)*cot(x) = y(x)^3*sin(x)^3; ic:=y(1/2*Pi) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]+y[x]*Cot[x]==y[x]^3*Sin[x]^3; ic={y[Pi/2]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-y(x)**3*sin(x)**3 + y(x)/tan(x) + Derivative(y(x), x),0) ics = {y(pi/2): 1} dsolve(ode,func=y(x),ics=ics)