20.26.34 problem 28

Internal problem ID [4059]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number : 28
Date solved : Monday, January 27, 2025 at 08:07:16 AM
CAS classification : [_Laguerre, [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} x y^{\prime \prime }-x y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.017 (sec). Leaf size: 42

Order:=6; 
dsolve(x*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
 
\[ y \left (x \right ) = \ln \left (x \right ) \left (-x +\operatorname {O}\left (x^{6}\right )\right ) c_{2} +c_{1} x \left (1+\operatorname {O}\left (x^{6}\right )\right )+\left (1+x -\frac {1}{2} x^{2}-\frac {1}{12} x^{3}-\frac {1}{72} x^{4}-\frac {1}{480} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_{2} \]

Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 41

AsymptoticDSolveValue[x*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {1}{72} \left (-x^4-6 x^3-36 x^2+144 x+72\right )-x \log (x)\right )+c_2 x \]