Internal
problem
ID
[3682]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.8,
Change
of
Variables.
page
79
Problem
number
:
Problem
65
Date
solved
:
Tuesday, March 04, 2025 at 05:07:00 PM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
With initial conditions
ode:=1/y(x)*diff(y(x),x)-2/x*ln(y(x)) = 1/x*(1-2*ln(x)); ic:=y(1) = exp(1); dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]/y[x]-2/x*Log[y[x]]==1/x*(1-2*Log[x]); ic={y[1]==Exp[1]}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x)/y(x) - (1 - 2*log(x))/x - 2*log(y(x))/x,0) ics = {y(1): E} dsolve(ode,func=y(x),ics=ics)