20.28.5 problem 5

Internal problem ID [4067]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788
Problem number : 5
Date solved : Monday, January 27, 2025 at 08:07:25 AM
CAS classification : [_Lienard]

\begin{align*} x y^{\prime \prime }+2 y^{\prime }+y x&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.020 (sec). Leaf size: 32

Order:=6; 
dsolve(x*diff(y(x),x$2)+2*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);
 
\[ y \left (x \right ) = c_{1} \left (1-\frac {1}{6} x^{2}+\frac {1}{120} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\frac {c_{2} \left (1-\frac {1}{2} x^{2}+\frac {1}{24} x^{4}+\operatorname {O}\left (x^{6}\right )\right )}{x} \]

Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 42

AsymptoticDSolveValue[x*D[y[x],{x,2}]+2*D[y[x],x]+x*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {x^3}{24}-\frac {x}{2}+\frac {1}{x}\right )+c_2 \left (\frac {x^4}{120}-\frac {x^2}{6}+1\right ) \]