20.28.14 problem 20

Internal problem ID [4076]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788
Problem number : 20
Date solved : Monday, January 27, 2025 at 08:07:36 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+\left (1-\frac {3}{4 x^{2}}\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.015 (sec). Leaf size: 46

Order:=6; 
dsolve(diff(y(x),x$2)+(1-3/(4*x^2))*y(x)=0,y(x),type='series',x=0);
 
\[ y \left (x \right ) = \frac {c_{1} x^{2} \left (1-\frac {1}{8} x^{2}+\frac {1}{192} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (\ln \left (x \right ) \left (x^{2}-\frac {1}{8} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\left (-2+\frac {3}{32} x^{4}+\operatorname {O}\left (x^{6}\right )\right )\right )}{\sqrt {x}} \]

Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 72

AsymptoticDSolveValue[D[y[x],{x,2}]+(1-3/(4*x^2))*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {x^{11/2}}{192}-\frac {x^{7/2}}{8}+x^{3/2}\right )+c_1 \left (\frac {1}{16} x^{3/2} \left (x^2-8\right ) \log (x)-\frac {5 x^4-16 x^2-64}{64 \sqrt {x}}\right ) \]