Internal
problem
ID
[3710]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
8,
Linear
differential
equations
of
order
n.
Section
8.1,
General
Theory
for
Linear
Differential
Equations.
page
502
Problem
number
:
Problem
37
Date
solved
:
Tuesday, March 04, 2025 at 05:08:06 PM
CAS
classification
:
[[_3rd_order, _missing_y]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)+3*x^2*diff(diff(y(x),x),x)-6*x*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]+3*x^2*D[y[x],{x,2}]-6*x*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) + 3*x**2*Derivative(y(x), (x, 2)) - 6*x*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)