23.2.6 problem 4(f)

Internal problem ID [4123]
Book : Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section : Chapter 3. Linear differential equations of second order. Exercises at page 31
Problem number : 4(f)
Date solved : Monday, January 27, 2025 at 08:36:48 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 22

dsolve(diff(y(x),x$2)-4*diff(y(x),x)+13*y(x)=0,y(x), singsol=all)
 
\[ y \left (x \right ) = {\mathrm e}^{2 x} \left (c_{1} \sin \left (3 x \right )+c_{2} \cos \left (3 x \right )\right ) \]

Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 26

DSolve[D[y[x],{x,2}]-4*D[y[x],x]+13*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{2 x} (c_2 \cos (3 x)+c_1 \sin (3 x)) \]