23.3.10 problem 7(j)

Internal problem ID [4151]
Book : Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section : Chapter 4. The general linear differential equation of order n. Exercises at page 63
Problem number : 7(j)
Date solved : Monday, January 27, 2025 at 08:40:03 AM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }-y&=0 \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 35

dsolve(diff(y(x),x$3)-y(x)=0,y(x), singsol=all)
 
\[ y \left (x \right ) = {\mathrm e}^{x} c_{1} +{\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) c_{2} +c_3 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 52

DSolve[D[y[x],{x,3}]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{-x/2} \left (c_1 e^{3 x/2}+c_2 \cos \left (\frac {\sqrt {3} x}{2}\right )+c_3 \sin \left (\frac {\sqrt {3} x}{2}\right )\right ) \]