Internal
problem
ID
[3777]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
8,
Linear
differential
equations
of
order
n.
Section
8.8,
A
Differential
Equation
with
Nonconstant
Coefficients.
page
567
Problem
number
:
Problem
18
Date
solved
:
Tuesday, March 04, 2025 at 05:16:14 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+6*y(x) = x^4*sin(x); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+6*y[x]==x^4*Sin[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**4*sin(x) + x**2*Derivative(y(x), (x, 2)) - 4*x*Derivative(y(x), x) + 6*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)