20.11.6 problem Problem 6

Internal problem ID [3788]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572
Problem number : Problem 6
Date solved : Tuesday, March 04, 2025 at 05:16:44 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-1\right ) y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=\frac {\sin \left (x \right )}{\sqrt {x}} \end{align*}

Maple. Time used: 0.050 (sec). Leaf size: 17
ode:=4*x^2*diff(diff(y(x),x),x)+4*x*diff(y(x),x)+(4*x^2-1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {c_{1} \sin \left (x \right )+c_{2} \cos \left (x \right )}{\sqrt {x}} \]
Mathematica. Time used: 0.032 (sec). Leaf size: 39
ode=4*x^2*D[y[x],{x,2}]+4*x*D[y[x],x]+(4*x^2-1)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {e^{-i x} \left (2 c_1-i c_2 e^{2 i x}\right )}{2 \sqrt {x}} \]
Sympy. Time used: 0.216 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*Derivative(y(x), (x, 2)) + 4*x*Derivative(y(x), x) + (4*x**2 - 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} J_{\frac {1}{2}}\left (x\right ) + C_{2} Y_{\frac {1}{2}}\left (x\right ) \]