Internal
problem
ID
[3790]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
8,
Linear
differential
equations
of
order
n.
Section
8.9,
Reduction
of
Order.
page
572
Problem
number
:
Problem
11
Date
solved
:
Tuesday, March 04, 2025 at 05:16:46 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
ode:=x*diff(diff(y(x),x),x)-(2*x+1)*diff(y(x),x)+2*y(x) = 8*x^2*exp(2*x); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],{x,2}]-(2*x+1)*D[y[x],x]+2*y[x]==8*x^2*Exp[2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-8*x**2*exp(2*x) + x*Derivative(y(x), (x, 2)) - (2*x + 1)*Derivative(y(x), x) + 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-8*x**2*exp(2*x) + x*Derivative(y(x), (x, 2)) + 2*y(x))/(2*x + 1) cannot be solved by the factorable group method